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Abstract
In this paper, we examine the mechanics of a nano-scaled gigahertz oscillator
comprising a fullerene that is moving within the center of a bundle of carbon
nanotubes. Although numerical results specifically for a C60 fullerene are
presented, the method is equally valid for any fullerene which can be modeled
as a spherical molecule. A general definition of a nanotube bundle is employed
which can comprise any number of parallel carbon nanotubes encircling the
oscillating fullerene. Results are presented which prescribe the dimension
of the bundle for any nanotube radius and the optimal configurations which
give rise to the maximum suction energy for the fullerene. Prior results for
fullerene single-walled nanotube oscillators are employed, and new results are
also derived. These include a calculation of optimum nanotube bundle size to
be employed for a C60-nanotube bundle oscillator, as well as new analytical
expressions for the force and energy for a semi-infinite nanotube and a fullerene
not located on the axis of the cylinder.

PACS numbers: 46.70.−p, 61.46.−w

1. Introduction

Research into carbon nanostructures has progressed at a rapid rate since the discovery of
the C60 fullerene in the 1980s. Fullerenes and related carbon nanotube structures have been
investigated for many applications due to their outstanding mechanical properties such as high
strength and low weight, as well as their electrical properties which can be selected based on
the particular nanotube structure. However, the theoretical understanding of their structures,
their properties and the mechanisms which lead to their material characteristics require a more
complete understanding, as well as more reliable models to predict their behavior when these
structures interact with other carbon nanotubes and their environment.
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We use the term ‘nano-oscillator’ to describe a device comprising an oscillating body
moving backward and forward in or around a nanostructure. Such a device generates motion
from the van der Waals force acting between the oscillating body and the interacting structure.
Cumings and Zettl [1] observe that the sliding resistance force in multi-walled carbon
nanotubes is very low and propose that this can be exploited in nano-electromechanical
systems. Furthermore, they observe that an extracted inner shell of a multi-walled carbon
nanotube will quickly and completely retract into the nanotube due to the excess van der
Waals interaction energy. This phenomenon gives rise to the possibility of using a multi-
walled carbon nanotube as a nano-oscillator. The scale of the system relative to the magnitude
of the restoring force, combined with the low-friction environment, means that the frequency
of such oscillators can reach the gigahertz range, which presents new opportunities for devices
such as resonators, nano-antennae and high-speed filters. Zheng and Jiang [2] investigate a
multi-walled carbon nanotube oscillator, where one nanotube oscillates within another, and
they note that the shorter the inner tube, the higher the frequency of oscillation. This motivates
the use of a C60 fullerene as the oscillating core as this represents the ultimate limit of the
shortest possible carbon nanostructure, and Liu et al [3] use a similar approach for a C60

fullerene oscillating inside a carbon nanotube.
Classical applied mathematical studies have also been undertaken, especially those of

Baowan and Hill [4] and Baowan et al [5], who study double-walled carbon nanotube
oscillators, and Hilder and Hill [6, 7] who study carbon nanotori oscillators and orbiters.
The prior work of the authors [8–10] investigate the mechanics of nano-oscillators comprising
a fullerene molecule oscillating inside a single-walled carbon nanotube which has open ends.
There the notions of acceptance condition and suction energy for these systems are formulated
which can be used to calculate the oscillatory frequency of such systems and good agreement is
obtained with molecular dynamics simulations but with a much greatly reduced computational
effort.

A novel development in this area has been the proposal to use a carbon nanotube bundle
as the structure within which a body may oscillate. Kang et al [11] investigate such a system
comprising a single-walled carbon nanotube oscillating in a nanotube bundle. In a recent
paper, the authors [12] also investigate a nano-oscillator system comprising a single-walled
carbon nanotube moving in the vacancy in a bundle of single-walled carbon nanotubes, and
produce results which are in reasonable agreement with the molecular dynamics study. In this
paper, we extend this idea to nano-oscillators comprising a spherical fullerene C60 oscillating
inside the vacancy in a carbon nanotube bundle. Current studies concentrate on extracting
a single or a number of nanotubes from a bundle comprising a triangular lattice of similar
nanotubes. Here we propose a more general definition of a bundle which applies to the
triangle lattice but it may also find future applicability to devices specifically constructed with
a particular geometry which is designed to maximize the oscillatory frequency subject to some
set of constraints.

In the following section, we outline the geometry of the nanotube bundle, the Lennard–
Jones potential function and we combine these two to give the bundle energy which is
used to determine equilibrium configurations of nanotube bundles. In section 3, the energy
between a spherical fullerene and a doubly infinite nanotube is employed to calculate optimum
configurations of C60-nanotube bundle oscillators and the suction energies W is calculated
for these optimal oscillators. Following this, in section 4, we use new expressions which are
derived in appendices A and B to detail the nature of the suction of a C60 fullerene into the
open end of a nanotube bundle, in terms of the force and energy profile, and after confirming
that impulse-like forces are in operation at the bundle extremities, we go on to calculate
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Table 1. Constants used in this model.

LJ attraction (graphene–graphene) A 15.2 eV Å6

LJ repulsion (graphene–graphene) B 24.1 × 103 eV Å12

LJ attraction (graphene–C60) A 17.4 eV Å6

LJ repulsion (graphene–C60) B 29 × 103 eV Å12

Atomic surface density (graphene) ηt 0.3812 atom Å−2

Atomic surface density (C60) ηf 0.3789 atom Å−2

Radius of C60 fullerene r0 3.55 Å
Mass of C60 fullerene mf 1.196 × 10−24 kg

the oscillatory frequency for the optimal configurations. Finally, in section 5 we provide a
discussion and some conclusions.

2. Lennard–Jones potential for a nanotube bundle

2.1. Nanotube bundle geometry

In this paper, we adopt the same definition for a nanotube bundle as that used in the prior work
[12] on a nanotube oscillating in a nanotube bundle. That is, a nanotube bundle is assumed to
comprise an integral number N of carbon nanotubes aligned parallel to and equidistant from
a common axis, which we term the bundle axis. The perpendicular distance from the bundle
axis to the axis of each constituent nanotube is termed the bundle radius R. Furthermore, we
assume that the constituent nanotubes are all of equal length 2L and radius r and that they are
evenly distributed around the bundle axis so that the angle subtended at the bundle axis by
two adjacent nanotubes is 2π/N . We take the bundle axis to be collinear with the z-axis and
therefore the ith tube in the nanotube bundle has a surface in rectangular Cartesian coordinates
(x, y, z) which is given by(

R cos

(
2π(i − 1)

N

)
+ r cos θi, R sin

(
2π(i − 1)

N

)
+ r sin θi, zi

)
, (1)

where i ∈ {1, . . . , N}, 0 � θi � 2π and −L � zi � L. However, it is convenient for some
of the analysis in the present paper to assume a semi-infinite tube, with 0 � zi < ∞, or a
completely infinite tube, with −∞ < zi < ∞. The numerical values of the various constants
used in this model are shown in table 1, where the Lennard–Jones constants are taken from
Girifalco et al [13] and the surface densities are calculated from uniformly distributing the
known number of atoms across the idealized surface.

2.2. Lennard–Jones potential

To calculate the van der Waals interaction energy we employ the six-twelve Lennard–Jones
potential which gives the potential energy as a function of the form

�(ρ) = − A

ρ6
+

B

ρ12
,

where ρ is the distance between atoms and A and B are the Lennard–Jones attractive and
repulsive constants, respectively. One method to calculate the total interaction energy between
two molecules is to perform a discrete summation of all the pair-wise interactions for all atoms
making up both molecules. However, the approach adopted here is to model the interaction
using a continuum approximation together with the mean atomic surface densities, η1 and η2,
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used to scale the interaction energy, which is then modeled by surface integrals over the two
interacting molecules. Thus, the total energy E is given by

E = η1η2

∫ ∫
S1

∫ ∫
S2

�(ρ) dS1 dS2,

where S1 and S2 denote the surfaces of the two interacting molecules and ρ denotes the distance
between typical surface elements on each surface.

The continuum approach has been employed for many different molecules and
configurations, particularly in the work of Girifalco [14], Henrard et al [15] and Girifalco
et al [13]. The present authors also employ this approach to study various fullerenes oscillating
in a single-walled carbon nanotube [8–10] and a single-walled carbon nanotube oscillating in
a nanotube bundle [12].

2.3. Nanotube bundle energy

As derived in [12], the potential energy per unit length for two identical, parallel carbon
nanotubes of radius r and with axes separated by a distance δ is given by

Ett = 3

2
η2

t r
2π3α−5

[
−AF2

(
5

2
,−3

2
,

1

2
, 1, 1;− r2

α2
,−4rδ

α2

)

+
21

32
Bα−6F2

(
11

2
,−9

2
,

1

2
, 1, 1;− r2

α2
,−4rδ

α2

)]
, (2)

where the constants A and B are those from table 1 for graphene–graphene systems,
α2 = δ(δ − 2r) and F2(α, β, β ′, γ, γ ′; x, y) is an Appell hypergeometric function of two
variables as described by Erdélyi et al ([16], section 5.7).

Following [12] to calculate the total bundle energy EB we sum the individual interactions
of each tube in the bundle with every other tube. This leads to the following expression

EB = N

2

N−1∑
k=1

Ett

(
2R sin

(
kπ

N

))
, (3)

where Ett (δ) is given by (2), and (3) gives the tube–tube energy for two nanotubes of radius
r at a distance δ. A graph of the bundle energy EB versus radius R is shown in figure 1 for
carbon nanotubes of various radii.

In the design of a carbon nanotube bundle, the key question is that of determining the
minimum energy configuration. This issue arises when considering the bundle radius that a
collection of nanotubes adopt if free to move, or in the case of when the nanotubes are not free
to move, the amount of strain in a nanostructure caused by the van der Waals interactions. In
this paper, we assume that the bundle adopts its minimum energy position, and therefore the
bundle radius R is determined from the number of nanotubes in the bundle N and the radii of
the constituent nanotubes r. In figure 2, we show the relationship between the bundle radius
R and the tube radius r leading to a minimized bundle energy for various values of N.

3. Interaction of spherical fullerene with nanotube bundle

Here we calculate the interaction potential between a fullerene of radius r0 located at a position
(ε cos φ, ε sin φ, 0) relative to the center of a nanotube bundle, as illustrated in figure 3. To
calculate the suction energy W as defined by [8, 9] we assume for the moment that the
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Figure 1. Bundle energy versus radius for three different radii of carbon nanotubes, with N = 5.
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Figure 2. Bundle radius versus nanotube radius for bundles with N ∈ {3, 4, . . . , 8}.

nanotubes are infinite in length. The distance from the center of the fullerene to the axis of
the kth tube in the bundle dk is given by

d2
k =

(
R cos

(
2kπ

N

)
− ε cos φ

)2

+

(
R sin

(
2kπ

N

)
− ε sin φ

)2

= (R − ε)2 + 4Rε sin2

(
kπ

N
− φ

2

)
,

and we require that dk > r0 + r , for all k ∈ {1, 2, 3, . . . , N}.



13202 B J Cox et al
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Figure 3. C60 near the open end of a nanotube bundle.

We denote the interaction energy between the fullerene and a single tube which is a
distance dk away by Ef t (dk) so that the total suction energy of the fullerene W is given by

W = −
N∑

k=1

Ef t

([
(R − ε)2 + 4Rε sin2

(
kπ

N
− φ

2

)]1/2
)

.

For infinite nanotubes, an expression for the function Ef t already appears in Cox et al [9] as1

given by

Ef t (dk) = 4π2r2
0 rηfηt

[
B

5

(
315

256
J5 +

1155

64
r2

0 J6 +
9009

128
r4

0 J7

+
6435

64
r6

0 J8 +
12155

256
r8

0 J9

)
− A

8

(
3J2 + 5r2

0 J3
)]

, (4)

where the constants A and B are those from table 1 for graphene–C60 systems and the integrals
Jn are defined by

Jn =
∫ π

−π

dθ(
r2 + d2

k − r2
0 − 2rdk cos θ

)n+1/2 ,

which can be expressed analytically in terms of hypergeometric functions as

Jn = 2π[
(r − dk)2 − r2

0

]n+1/2 F

(
1

2
, n +

1

2
; 1;− 4rdk

(r − dk)2 − r2
0

)
, (5)

where F(a, b; c; z) is the usual hypergeometric function. The reader is referred to ([9],
appendix A) for the full details of the derivations of equations (4) and (5).

Assuming that the equilibrium position for the C60 fullerene is located at the center of the
nanotube bundle, the total energy W can be simplified to W = −NEf t (R), and the minimum
for any value of N is given by the minimum of the Ef t function, which is the equilibrium
position for the fullerene on the outside of a single tube. By calling this distance, the bundle
radius R which optimizes the suction energy for a particular tube radius r, we can thereby
determine a relationship between these two radii which would lead to an optimized oscillator

1 The fraction 315/256 was incorrectly reported as 105/128 in [9].
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Figure 4. Bundle radius versus nanotube radius for a C60 fullerene and nanotube bundles with
N ∈ {3, 4, . . . , 8}.

Table 2. Parameters for optimized C60 fullerene/nanotube bundle oscillators.

Number Tube radius Bundle radius Suction energy
N r (Å) R (Å) W (eV)

4 10.294 16.792 2.314
5 5.439 11.930 2.551
6 3.355 9.838 2.731
7 2.219 8.692 2.850

for any value of N. In figure 4, we graph the relationship between the nanotube radius r and
the bundle radius R which optimizes the suction energy for the C60 fullerene. On the same
figure, we also show the nanotube radii versus bundle radii data from figure 2. The points
where the lines intersect prescribe the specific values of r and R which lead to optimized
oscillators for specific values of N. As can been seen from the figure, limiting the tube radius
r to the range 2–12 Å means that oscillators can only be constructed for N ∈ {4, 5, 6, 7}.
More precise parameters for these ideal oscillators are given in table 2, including the suction
energy for each configuration. We note that the suction energy W increases with the number
of tubes N forming the bundle, so that one way to optimize a bundle oscillator is to design the
bundle to have as many tubes as is practical. However, we also observe that the maximum
value of suction energy W = 2.85 eV is still less than the maximum suction energy that may
be obtained for a single-walled carbon nanotube–fullerene oscillator, since Cox et al [8] find
the maximum value to be Wmax = 3.242 eV.

4. Suction of a fullerene into a nanotube bundle

In this section, we use the expressions given in appendix A for the van der Waals force between
a fullerene and semi-infinite tube to describe the suction of a C60 fullerene into a nanotube
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Figure 5. Total van der Waals force for a fullerene entering a nanotube bundle for various
configurations of ideal oscillators.

bundle end. Due to the short range nature of the van der Waals interaction, when the fullerene
is more than 1 nm from the bundle end, either inside or outside of the bundle, then for all
practical purposes the force is negligible. Using this observation, we can use the expressions
given in appendix A to characterize the force at both ends of a finite tube, provided that the tube
half-length L is greater than 1 nm. For the optimized bundles given in the previous section,
the equilibrium position for the fullerene is on the bundle axis and therefore the total van der
Waals force is given by Fz

tot = NFz
vdW where the latter is given by equations (A.1) and (A.2).

In figure 5, we show the force profiles for the four optimal oscillator configurations given in the
previous section and, for comparison, the profile for a C60 single-walled nanotube from Cox
et al [8] with a nanotube radius of 6.783 Å. We note that the force is always positive and
therefore the C60 fullerene is sucked into the bundle. We also note that as also found in [8] the
force is essentially an impulse acting at the end of the nanotube only and therefore provided
the bundle length is sufficiently large, the van der Waals force can be modeled as a Dirac
delta function. However, it can be seen from this figure that the force for bundle oscillators is
substantially less than that generated by the optimal single-walled carbon nanotube oscillator.
The reason that the single-walled nanotube generates substantially more force is that for
this configuration the curvature of the nanotube wall matches the curvature of the oscillating
fullerene and therefore a greater van der Waals interaction can be generated in the optimum
region at the base of the potential well. Another interesting feature in figure 5 is the local
minimum which occurs when the fullerene is positioned at the nanotube opening, Z = 0. The
reason for this is that the wall of the fullerene which is closest to the nanotube, is closer than
the van der Waals equilibrium distance, and therefore causes a small reduction in the force just
as the fullerene crosses into the nanotube bundle. We comment that the same feature is present
in the case of the optimal single-walled nanotube oscillator. Likewise, the total interaction
energy Etot = NE where E is given by equations (B.1) and (B.2). In figure 6, we plot this
force and observe that the energy profile is similar to that found in [8].

Given the similarities between the force and energy profiles that we find here and
those in [8, 9], we adopt exactly the same model and we use the equation for frequency
of f = (2W/mf)

1/2/4L, where mf is the mass of the fullerene. In figure 7, we plot the
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Figure 7. Frequency for a fullerene nanotube bundle oscillator for various configurations of ideal
oscillators varying the bundle length (2L).

oscillation frequency for the various ideal oscillators, varying the bundle length 2L. As
anticipated by the suction energy results in table 2, the configuration with N = 7 provides
the highest frequency. However, as anticipated by the results for the force, the single-walled
nanotube oscillator provides a higher frequency, for the same oscillator length, than all the
bundle geometries studied here.

5. Conclusions

In this paper, we consider nano-oscillators comprising a spherical fullerene oscillating in a
nanotube bundle. The Lennard–Jones potential is used to calculate the interaction energy
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between the nanotubes forming the bundle and this is employed to determine the optimum
bundle size for various oscillators comprising an oscillating spherical C60 fullerenes. This
latter result is used to predict the oscillator bundle configuration which optimizes the suction
energy and therefore leads to a maximum oscillation frequency. New analytical results are
derived for the interaction force and energy between a spherical fullerene and a semi-infinite
carbon nanotube for the case when the fullerene is located at an arbitrary offset distance from
the nanotube axis. The van der Waals interaction force is a simple rational function while the
energy is given in terms of a finite sum of Appell hypergeometric functions of the first kind.
These relationships are employed to confirm that the nature of the suction into the carbon
nanotube is similar to that already described for the C60-nanotube oscillator and the frequency
for bundle oscillators is calculated using the same model for the motion with the van der Waals
forces operating at the ends of the bundle being modeled as Dirac delta functions.

The primary contribution of this work is that it provides a general framework which enables
optimum dimensions for nano-oscillators to be determined from classical geometrical and
mechanical principles. While the model is an idealization, it provides guidance in the design
by indicating fundamental relationships between the bundle geometry and the nanotube radius,
which optimizes the van der Waals suction energy and therefore the oscillation frequency.
Although temperature effects, friction and energy losses in other modes of vibration will
qualitatively affect the performance of bundle oscillators, such effects will be comparable
between oscillators and therefore the qualitative predictions made from figure 4 will still be
valid. The other important finding from this work is that from the perspective of purely
maximizing the suction energy, the optimal single-walled nanotube oscillator performs better
than that of the optimal bundle configurations, leading to a higher frequency as shown in
figures 5 and 7.
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Appendix A. Van der Waals force for an offset fullerene

In Cox et al [9], the total energy for an offset fullerene and a doubly infinite nanotube was
calculated. Here we take this analysis further to calculate the z component of the van der
Waals force Fz

vdW for an offset fullerene and a semi-infinite nanotube. This is then extended
in the following appendix to calculate the energy for the fullerene.

We begin with a sphere centered at (0, 0, Z) and radius r0 interacting with a cylinder with
an axis parallel to the z axis and a perpendicular distance R from the z axis. The surface of the
cylinder is given by (1) with i = 1, and 0 � θ1 � 2π and 0 � zi < ∞. From ([9], equations
(2.12) and (2.13)) and using Fz

vdW = −∂E/∂z gives

Fz
vdW(Z) = 4πrr2

0 ηtηf
[
A

(
J3 + 2r2

0 J4
)

− (B/5)
(
5J6 + 80r2

0 J7 + 336r4
0 J8 + 512r6

0 J9 + 256r8
0 J10

)]
, (A.1)

where the Jn are defined by the integral

Jn =
∫ π

−π

[
(R − r)2 − r2

0 + Z2 + 4rR sin2(θ1/2)
]−n

dθ1.



Mechanics of fullerenes oscillating in carbon nanotube bundles 13207

By employing the substitution t = sin2(θ1/2) and, for algebraic convenience, the substitution
µ = (R − r)2 − r2

0 + Z2, gives

Jn = 2µ−n

∫ 1

0
t−1/2(1 − t)−1/2[1 + (4rR/µ)t]−n dt,

which is in fundamental integral form of the usual hypergeometric function, and therefore

Jn = 2πµ−nF (n, 1/2; 1;−4rR/µ),

where F(a, b; c; z) is the usual hypergeometric function. By employing Erdélyi et al
([16, section 2.9, equation (18)]) we may transform this function into a degenerate series
thus

Jn = 2πµ−1/2(µ + 4rR)1/2−nF (1 − n, 1/2; 1;−4rR/µ),

which can be written as the finite sum

Jn = 2π(µ + 4rR)1/2−n

n−1∑
m=0

(1 − n)m(1/2)m

(m!)2
(−4rR)mµ−1/2−m. (A.2)

So equation (A.1) combined with the solution for Jn (A.2) constitute an analytical solution
to the problem of determining the z-component of the van der Waals force Fz

vdW for an offset
fullerene and a semi-infinite carbon nanotube.

Appendix B. Interaction energy for an offset fullerene

In the previous appendix, the van der Waals force for an offset fullerene is given. To calculate
the total interaction energy we require to integrate this force from −∞ to Z such that
E = − ∫ Z

−∞ Fz
vdW(z) dz. Since the force Fz

vdW is an even function of z, we can say that
for Z � 0, E = − ∫ ∞

−Z
F z

vdW(z) dz and for positive Z > 0, E = 2E(0) − E(−Z). Therefore
from equations (A.1) and (A.2), we need to evaluate the following integral

Kn,m =
∫ ∞

−Z

(ν + z2)−1/2−m(ν + 4rR + z2)1/2−n dz,

where ν = (R − r)2 − r2
0 is substituted for algebraic convenience. We now employ the

substitution u = (ν + Z2)/(ν + z2) which after some routine algebra gives

Kn,m = (ν + Z2)1/2−n−m

2

∫ 1

0
un+m−3/2[1 + u4rR/(ν + Z2)]1/2−n

× [1 − uν/(ν + Z2)]−1/2 du,

which is in fundamental integral form of Euler’s type for the Appell hypergeometric function
of two variables and gives

Kn,m = (ν + Z2)1/2−n−m

2n + 2m − 1
F1

(
n + m − 1

2 ; n − 1
2 , 1

2 ; n + m + 1
2 ;−4rR/(ν + Z2), ν/(ν + Z2)

)
,

where F1(α;β, β ′; γ ; x, y) is an Appell hypergeometric function as defined in Erdélyi et al
[16].

This then allows us to give an analytic expression for the energy for the offset fullerene as

E(Z) = 8π2rr2
0 ηtηf

[−A
(
L3 + 2r2

0 L4
)

+ (B/5)
(
5L6 + 80r2

0 L7 + 336r4
0 L8 + 512r6

0 L9 + 256r8
0 L10

)]
, (B.1)
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where

Ln =
n−1∑
m=0

(1 − n)m(1/2)m

(m!)2
(−4rR)m

(ν + Z2)1/2−n−m

2n + 2m − 1

×F1
(
n + m − 1

2 ; n − 1
2 , 1

2 ; n + m + 1
2 ;−4rR/(ν + Z2), ν/(ν + Z2)

)
. (B.2)

We comment that this is a fully analytical solution to the problem which has not previously
appeared in the literature.
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